Managing a Vast Amount of Data Successfully

managedataI have two kids. In school. They generate a remarkable amount of paper. From math worksheets, permission slips, book reports (now called reading responses) to newsletters from the school. That’s a lot of paper. All of it is presented in different forms with different results – the math worksheets tell me how my child is doing in math, the permission slips tell me when my kids will be leaving school property and the book reports tell me what kind of books my child is interested in reading. I need to put the math worksheet information into a storage space so I can figure out how to prop up my kid if needed on the basic geometry constructs. The dates that permission slips are covering need to go into the calendar. The book reports can be used at the library to choose the next book.

We are facing a similar problem (albeit on a MUCH larger scale) in the insurance market. We are getting data from clinicians. Many of you are developing and deploying mobile applications to help patients manage their care, locate providers and improve their health. You may capture licensing data to assist pharmaceutical companies identify patients for inclusion in clinical trials. You have advanced analytics systems for fraud detection and to check the accuracy and consistency of claims. Possibly you are at the point of near real-time claim authorization.

The amount of data generated in our world is expected to increase significantly in the coming years. There are an estimated 50 petabytes of data in the Healthcare realm, which is predicted to grow by a factor of 50 to 25,000 petabytes by 2020. Healthcare payers already store and analyze some of this data. However in order to capture, integrate and interrogate large information sets, the scope of the payer information will have to increase significantly to include provider data, social data, government data, pharmaceutical and medical product manufacturers data, and information aggregator data.

Right now – you probably depend on a traditional data warehouse model and structured data analytics to access some of your data. This has worked adequately for you up to now, but with the amount of data that will be generated in the future, you need the processing capability to load and query multi-terabyte datasets in a timely fashion. You need the ability to manage both semi-structured and unstructured data.

Fortunately, a set of emerging technologies (called “Big Data”) may provide the technical foundation of a solution. Big Data usually includes data sets with sizes beyond the ability of commonly used software tools to capture, curate, manage and process data within a tolerable amount of time. While some existing technology may prove inadequate to future tasks, many of the information management methods of the past will prove to be as valuable as ever. Assembling successful Big Data solutions will require a fusion of new technology and old-school disciplines:

Which of these technologies do you have? Which of these technologies can integrate with on-premise AND cloud based solutions? On which of these technologies does your organization have knowledgeable resources that can utilize the capabilities to take advantage of Big Data?

Comments