Big Data Is Neither-Part II

Big_DataYou Say Big Dayta, I say Big Dahta

Some say Big Data is a great challenge while others say Big Data creates new opportunities. Where do you stand?  For most companies concerned with their Big Data challenges, it shouldn’t be so difficult – at least on paper. Computing costs (both hardware and software) have vastly shrunk. Databases and storage techniques have become more sophisticated and scale massively, and companies such as Informatica have made connecting and integrating all the “big” and disparate data sources much easier and have helped companies achieve a sort of “big data synchronicity”. As it is.

In the process of creating solutions to Big Data problems, humans (and the supra-species known as IT Sapiens) have a tendency to use theories based on linear thinking and the scientific method. There is data as our systems know it and data as our systems don’t. The reality, in my opinion, is that “Really Big Data” problems now and in the future will have complex correlations and unintuitive relationships that need to utilize mathematical disciplines, data models and algorithms that haven’t even been discovered or invented yet and when eventually discovered, will make current database science positively primordial.

At some point in the future, machines will be able to predict, based on big, perhaps unknown data types when someone is having a bad day or a good day, or more importantly whether a person may behave in a good or bad way. Many people do this now when they take a glance at someone across a room and infer how that person is feeling or what they will do next. They see eyes that are shiny or dull, crinkles around eyes or sides of mouths, then hear the “tone” in a voice and then their neurons put it altogether that this is a person that is having a bad day and needs a hug. Quickly. No one knows exactly how the human brain does this, but it does what it does and we go with it and we are usually right.


And some day, Big Data will be able to derive this and it will be an evolution point and it will also be a big business opportunity. Through bigger and better data ingestion and integration techniques and more sophisticated math and data models, a machine will do this fast and relatively speaking, cheaply. The vast majority won’t understand why or how it’s done, but it will work and it will be fairly accurate.

And my question to you all is this.

Do you see any other alternate scenarios regarding the future of big data? Is contextual computing an important evolution and will big data integration be more or less of a problem in the future.

PS. Oh yeah, one last thing to chew on concerning Big Data… If Big Data becomes big enough, does that spell the end of modelling as we know it?