Tag Archives: public sector

Is the Internet of Things relevant for the government?

Get connected. Be connected. Make connections. Find connections. The Internet of Things (IoT) is all about connecting people, processes, data and, as the name suggests, things. The recent social media frenzy surrounding the ALS Ice Bucket Challenge has certainly reminded everyone of the power of social media, the Internet and a willingness to answer a challenge. Fueled by personal and professional connections, the craze has transformed fund raising for at least one charity. Similarly, IoT may potentially be transformational to the business of the public sector, should government step up to the challenge.

shutterstock_132378518

Is the Internet of Things relevant for the government?

Government is struggling with the concept and reality of how IoT really relates to the business of government, and perhaps rightfully so. For commercial enterprises, IoT is far more tangible and simply more fun. Gaming, televisions, watches, Google glasses, smartphones and tablets are all about delivering over-the-top, new and exciting consumer experiences. Industry is delivering transformational innovations, which are connecting people to places, data and other people at a record pace.

It’s time to accept the challenge. Government agencies need to keep pace with their commercial counterparts and harness the power of the Internet of Things. The end game is not to deliver new, faster, smaller, cooler electronics; the end game is to create solutions that let devices connecting to the Internet interact and share data, regardless of their location, manufacturer or format and make or find connections that may have been previously undetectable. For some, this concept is as foreign or scary as pouring ice water over their heads. For others, the new opportunity to transform policy, service delivery, leadership, legislation and regulation is fueling a transformation in government. And it starts with one connection.

One way to start could be linking previously siloed systems together or creating a golden record of all citizen interactions through a Master Data Management (MDM) initiative. It could start with a big data and analytics project to determine and mitigate risk factors in education or linking sensor data across multiple networks to increase intelligence about potential hacking or breaches. Agencies could stop waste, fraud and abuse before it happens by linking critical payment, procurement and geospatial data together in real time.

This is the Internet of Things for government. This is the challenge. This is transformation.

This article was originally published on www.federaltimes.com. Please view the original listing here

 

FacebookTwitterLinkedInEmailPrintShare
Posted in Big Data, Business Impact / Benefits, Data Integration, Data Security, Master Data Management, Public Sector, Uncategorized | Tagged , , , , , | Leave a comment

Application Retirement: Old Applications, and Their Place In The Sun

obsolete_tech_large_sqareWhat springs to mind when you think about old applications? What happens to them when they outlived their usefulness? Do they finally get to retire and have their day in the sun, or do they tenaciously hang on to life?

Think for a moment about your situation and of those around you. From the time work started you have been encouraged and sometimes forced to think about, plan for and fund your own retirement. Now consider the portfolio your organization has built up over the years; hundreds or maybe thousands of apps, spread across numerous platforms and locations – A mix of home-grown with the best-in-breed tools or acquired from the leading application vendors.

Evaluating Your Current Situation

  • Do you know how many of those “legacy” systems are still running?
  • Do you know how much these apps are costing?
  • Is there a plan to retire them?
  • How is the execution tracking to plan?

Truth is, even if you have a plan, it probably isn’t going well.

Providing better citizen service at a lower cost

This is something every state and local organization aspires to do by reducing costs. Many organizations are spending 75% or more of their budgets on just keeping the lights on – maintaining existing applications and infrastructure. Being able to fully retire some, or many of these applications saves significant money. Do you know how much these applications are costing your organization? Don’t forget to include the whole range of costs that applications incur – including the physical infrastructure costs such as mainframes, networks and storage, as well as the required software licenses and of course the time of the people that actually keep them running. What happens when those with with Cobol and CICS experience retire? Usually the answer is not good news. There is a lot to consider and many benefits to be gained through an effective application retirement strategy.

August 2011 report by ESG Global shows that some 68% of organizations had over six or more legacy applications running and that 50% planned to retire at least one of those over the following 12-18 months. It would be interesting to see today’s situation and be able evaluate how successful these application retirement plans have been.

A common problem is knowing where to start. You know there are applications that you should be able to retire, but planning, building and executing an effective and success plan can be tough. To help this process we have developed a strategy, framework and solution for effective and efficient application retirement. This is a good starting point on your application retirement journey.

To get a speedy overview, take six minutes to watch this video on application retirement.

We have created a community specifically for application managers in our ‘Potential At Work’ site. If you haven’t already signed up, take a moment and join this group of like-minded individuals from across the globe.

FacebookTwitterLinkedInEmailPrintShare
Posted in Application ILM, Application Retirement, Business Impact / Benefits, Data Archiving, Operational Efficiency, Public Sector | Tagged , , , , | Leave a comment

Talk Amongst Yourselves: Why Twitter Needs #DataChat

Listeng to #DataChatWithin Government organizations, technologists are up against a wall of sound. In one ear, they hear consumers cry for faster, better service.

In the other, they hear administrative talk of smaller budgets and scarcer resources.

As stringent requirements for both transparency and accountability grow, this paradox of pressure increases.

Sometimes, the best way to cope is to TALK to somebody.

What if you could ask other data technologists candid questions like:

  • Do you think government regulation helps or hurts the sharing of data?
  • Do you think government regulators balance the privacy needs of the public with commercial needs?
  • What are the implications of big data government regulation, especially for users?
  • How can businesses expedite the government adoption of the cloud?
  • How can businesses aid in the government overcoming the security risks associated with the cloud?
  • How should the policy frameworks for handling big data differ between the government and the private sector?

What if you could tell someone who understood? What if they had sweet suggestions, terrific tips, stellar strategies for success? We think you can. We think they will.

That’s why Twitter needs a #DataChat.

Twitter Needs #DataChat

Third Thursdays, 3:00 PM EST

What on earth is a #DataChat?
Good question. It’s a Twitter Chat – A public dialog, at a set time, on a set topic. It’s something like a crowd-sourced discussion. Any Twitter user can participate simply by including the applicable hashtag in each tweet. Our hashtag is #DataChat. We’ll connect on Twitter, on the third Thursday of each month to share struggles, victories and advice about data governance. We’re going to begin this week, Thursday April 17, at 3:00 PM Eastern Time. For our first chat, we are going to discuss topics that relate to data technologies in government organizations.

What don’t you join us? Tell us about it. Mark your calendar. Bring a friend.

Because, sometimes, you just need someone to talk to.

FacebookTwitterLinkedInEmailPrintShare
Posted in Big Data, Data Governance, Governance, Risk and Compliance, Public Sector | Tagged , , , , | Leave a comment

Why the Government needs Data Integration

Data IntegrationLoraine Lawson does an outstanding job of covering the issues around government use of “data heavy” projects.  This includes a report by the government IT site, MeriTalk.

“The report identifies five factors, which it calls the Big Five of IT, that will significantly affect the flow of data into and out of organizations: Big data, data center consolidation, mobility, security and cloud computing.”

MeriTalk surveyed 201 state and local government IT professionals, and found that, while the majority of organizations plan to deploy the Big Five, 94 percent of IT pros say their agency is not fully prepared.  “In fact, if Big Data, mobile, cloud, security and data center consolidation all took place today, 89 percent say they’d need additional network capacity to maintain service levels. Sixty-three percent said they’d face network bottleneck risks, according to the report.”

This report states what most who work with the government already know; the government is not ready for the influx of data.  Nor is the government ready for the different uses of data, and thus there is a large amount of risk as the amount of data under management within the government explodes.

Add issues with the approaches and technologies leveraged for data integration to the list.  As cloud computing and mobile computing continue to rise in popularity, there is not a clear strategy and technology for syncing data in the cloud, or on mobile devices, with data that exists within government agencies.  Consolidation won’t be possible without a sound data integration strategy, nor will the proper use of big data technology.

The government sees a huge wave of data heading for it, as well as opportunities with new technology such as big data, cloud, and mobile.  However, there doesn’t seem to be an overall plan to surf this wave.  According to the report, if they do wade into the big data wave, they are likely to face much larger risks.

The answer to this problem is really rather simple.  As the government moves to take advantage of the rising tide of data, as well as new technologies, they need to be funded to get the infrastructure and the technology they need to be successful.  The use of data integration approaches and technologies, for example, will return the investment ten-fold, if properly introduced into the government problem domains.  This includes integration with big data systems, mobile devices, and, of course, the rising use of cloud-based platforms.

While data integration is not a magic bullet for the government, nor any other organization, the proper and planned use of this technology goes a long way toward reducing the inherent risks that the report identified.  Lacking that plan, I don’t think the government will get very far, very fast.

FacebookTwitterLinkedInEmailPrintShare
Posted in Data Integration, Public Sector | Tagged , , | Leave a comment

And now for the rest of the data…

In the first two issues I spent time looking at the need for states to pay attention to the digital health and safety of their citizens, followed by the oft forgotten need to understand and protect the non-production data. This is data than has often proliferated and also ignored or forgotten about.

In many ways, non-production data is simpler to protect. Development and test systems can usually work effectively with realistic but not real PII data and realistic but not real volumes of data. On the other hand, production systems need the real production data complete with the wealth of information that enables individuals to be identified – and therefore presents a huge risk. If and when that data is compromised either deliberately or accidentally the consequences can be enormous; in the impact on the individual citizens and also the cost of remediation on the state. Many will remember the massive South Carolina data breach of late 2012 when over the course of 2 days a 74 GB database was downloaded and stolen, around 3.8 million payers and 1.9 million dependents had their social security information stolen and 3.3 million “lost” bank account details. The citizens’ pain didn’t end there, as the company South Carolina picked to help its citizens seems to have tried to exploit the situation.

encryption protects against theft - unless the key is stolen too

encryption protects against theft – unless the key is stolen too

The biggest problem with securing production data is that there are numerous legitimate users and uses of that data, and most often just a small number of potentially malicious or accidental attempts of inappropriate or dangerous access. So the question is… how does a state agency protect its citizens’ sensitive data while at the same time ensuring that legitimate uses and users continues – without performance impacts or any disruption of access? Obviously each state needs to make its own determination as to what approach works best for them.

This video does a good job at explaining the scope of the overall data privacy/security problems and also reviews a number of successful approaches to protecting sensitive data in both production and non-production environments. What you’ll find is that database encryption is just the start and is fine if the database is “stolen” (unless of course the key is stolen along with the data! Encryption locks the data away in the same way that a safe protects physical assets – but the same problem exists. If the key is stolen with the safe then all bets are off. Legitimate users are usually easily able deliberately breach and steal the sensitive contents, and it’s these latter occasions we need to understand and protect against. Given that the majority of data breaches are “inside jobs” we need to ensure that authorized users (end-users, DBAs, system administrators and so on) that have legitimate access only have access to the data they absolutely need, no more and no less.

So we have reached the end of the first series. In the first blog we looked at the need for states to place the same emphasis on the digital health and welfare of their citizens as they do on their physical and mental health. In the second we looked at the oft-forgotten area of non-production (development, testing, QA etc.) data. In this third and final piece we looked at the need to and some options for providing the complete protection of non-production data.

FacebookTwitterLinkedInEmailPrintShare
Posted in Application ILM, Business Impact / Benefits, Data masking, Data Privacy, Enterprise Data Management, Public Sector | Tagged , , , , | Leave a comment

What types of data need protecting?

In my first article on the topic of citizens’ digital health and safety we looked at the states’ desire to keep their citizens healthy and safe and also at the various laws and regulations they have in place around data breaches and losses. The size and scale of the problem together with some ideas for effective risk mitigation are in this whitepaper.

The cost and frequency of data breaches continue to rise

The cost and frequency of data breaches continue to rise

Let’s now start delving a little deeper into the situation states are faced with. It’s pretty obvious that citizen data that enables an individual to be identified (PII) needs to be protected. We immediately think of the production data: data that is used in integrated eligibility systems; in health insurance exchanges; in data warehouses and so on. In some ways the production data is the least of our problems; our research shows that the average state has around 10 to 12 full copies of data for non-production (development, test, user acceptance and so on) purposes. This data tends to be much more vulnerable because it is widespread and used by a wide variety of people – often subcontractors or outsourcers, and often the content of the data is not well understood.

Obviously production systems need access to real production data (I’ll cover how best to protect that in the next issue), on the other hand non-production systems of every sort do not. Non-production systems most often need realistic, but not real data and realistic, but not real data volumes (except maybe for the performance/stress/throughput testing system). What need to be done? Well to start with, a three point risk remediation plan would be a good place to start.

1. Understand the non-production data using sophisticated data and schema profiling combined with NLP (Natural Language Processing) techniques help to identify previously unrealized PII that needs protecting.
2. Permanently mask the PII so that it is no longer the real data but is realistic enough for non-production uses and make sure that the same masking is applied to the attribute values wherever they appear in multiple tables/files.
3. Subset the data to reduce data volumes, this limits the size of the risk and also has positive effects on performance, run-times, backups etc.

Gartner has just published their 2013 magic quadrant for data masking this covers both what they call static (i.e. permanent or persistent masking) and dynamic (more on this in the next issue) masking. As usual the MQ gives a good overview of the issues behind the technology as well as a review of the position, strengths and weaknesses of the leading vendors.

It is (or at least should be) an imperative that from the top down state governments realize the importance and vulnerability of their citizens data and put in place a non-partisan plan to prevent any future breaches. As the reader might imagine, for any such plan to success needs a combination of cultural and organizational change (getting people to care) and putting the right technology – together these will greatly reduce the risk. In the next and final issue on this topic we will look at the vulnerabilities of production data, and what can be done to dramatically increase its privacy and security.

FacebookTwitterLinkedInEmailPrintShare
Posted in Application ILM, Data Archiving, Data Governance, Data masking, Data Privacy, Public Sector | Tagged , , , , , | Leave a comment

Informatica Acquires Siperian: One Year Later

It was about one year ago on January 28, 2010, that Informatica announced its acquisition of Siperian, a pure-play multidomain MDM vendor.

What a year it’s been. As a five-year veteran of Siperian/Informatica, it’s been thrilling and gratifying to be a part of the enterprise technology landscape that MDM has become. Part of the reason for this success is simply the proven business value that MDM is delivering to companies across multiple industries with data that is trusted, authoritative, and current. Just consider some of the momentum and highlights we’ve seen over the past year:

(more…)

FacebookTwitterLinkedInEmailPrintShare
Posted in Master Data Management | Tagged , , , , , , , , , , , , , , | 1 Comment