Tag Archives: PHI

Healthcare Data Masking: A Primer

Healthcare Data Masking: A Primer

Healthcare Data Masking: A Primer

When trying to protect your data from the nefarious souls that would like access to it (?), there are several options available that apply to very specific use cases. In order for us to talk about the different solutions – it is important to define all of the terms:

  • PII – Personally Identifiable Information – any data that could potentially identify a specific individual. Any information that can be used to distinguish one person from another and can be used for de-anonymizing anonymous data can be considered PII
  • GSA’s Rules of Behavior for Handling Personally Identifiable Information – This directive provides GSA’s policy on how to properly handle PII and the consequences and corrective actions that will be taken if a breach occurs
  • PHI – Protected Health Information – any information about health status, provision of health care, or payment for health care that can be lined to a specific individual
  • HIPAA Privacy Rule – The HIPAA Privacy Rule establishes national standards to protect individuals’ medical records and other personal health information and applies to health plans, health care clearinghouses, and those health care providers that conduct certain health care transactions electronically.  The Rule requires appropriate safeguards to protect the privacy of personal health information, and sets limits and conditions on the uses and disclosures that may be made of such information without patient authorization. The Rule also gives patients rights over their health information, including rights to examine and obtain a copy of their health records, and to request corrections.
  • Encryption – a method of protecting data by scrambling it into an unreadable form. It is a systematic encoding process which is only reversible with the right key.
  • Tokenization – a method of replacing sensitive data with non-sensitive placeholder tokens. These tokens are swapped with data stored in relational databases and files.
  • Data masking – a process that scrambles data, either an entire database or a subset. Unlike encryption, masking is not reversible; unlike tokenization, masked data is useful for limited purposes. There are several types of data masking:
    • Static data masking (SDM) masks data in advance of using it. Non production databases masked NOT in real-time.
    • Dynamic data masking (DDM) masks production data in real time
    • Data Redaction – masks unstructured content (PDF, Word, Excel)

Each of the three methods for protecting data (encryption, tokenization and data masking) have different benefits and work to solve different security issues . We’ll address them in a bit. For a visual representation of the three methods – please see the table below:

 

Original Value Encrypted Tokenized Masked
Last Name johnson 8UY%45Sj wjehneo simpson
First Name margaret 3%ERT22##$ owhksoes marge
SSN 585-88-9874 Mh9&o03ms)) 93nmvhf93na 345-79-4444

Encryption

For protecting PHI data – encryption is superior to tokenization. You encrypt different portions of personal healthcare data under different encryption keys. Only those with the requisite keys can see the data. This form of encryption requires advanced application support to manage the different data sets to be viewed or updated by different audiences. The key management service must be very scalable to handle even a modest community of users. Record management is particularly complicated. Encryption works better than tokenization for PHI – but it does not scale well.

Properly deployed, encryption is a perfectly suitable tool for protecting PII. It can be set up to protect archived data or data residing on file systems without modification to business processes.

  • To protect the data, you must install encryption and key management services to protect the data – this only protects the data from access that circumvents applications
  • You can add application layer encryption to protect data in use
    • This requires changing applications and databases to support the additional protection
    • You will pay the cost of modification and the performance of the application will be impacted

Tokenization

For tokenization of PHI – there are many pieces of data which must be bundled up in different ways for many different audiences. Using the tokenized data requires it to be de-tokenized (which usually includes a decryption process). This introduces an overhead to the process. A person’s medical history is a combination of medical attributes, doctor visits, outsourced visits. It is an entangled set of personal, financial, and medical data. Different groups need access to different subsets. Each audience needs a different slice of the data – but must not see the rest of it. You need to issue a different token for each and every audience. You will need a very sophisticated token management and tracking system to divide up the data, issuing and tracking different tokens for each audience.

Data Masking

Masking can scramble individual data columns in different ways so that the masked data looks like the original (retaining its format and data type) but it is no longer sensitive data. Masking is effective for maintaining aggregate values across an entire database, enabling preservation of sum and average values within a data set, while changing all the individual data elements. Masking plus encryption provide a powerful combination for distribution and sharing of medical information

Traditionally, data masking has been viewed as a technique for solving a test data problem. The December 2014 Gartner Magic Quadrant Report on Data Masking Technology extends the scope of data masking to more broadly include data de-identification in production, non-production, and analytic use cases. The challenge is to do this while retaining business value in the information for consumption and use.

Masked data should be realistic and quasi-real. It should satisfy the same business rules as real data. It is very common to use masked data in test and development environments as the data looks like “real” data, but doesn’t contain any sensitive information.

Share
Posted in 5 Sales Plays, Application ILM, Data Governance, Data masking, Data Privacy, Data Security, Governance, Risk and Compliance, Healthcare | Tagged , , , , , , , , | 1 Comment

How Protected is your PHI?

I live in a very small town in Maine. I don’t spend a lot of time thinking about my privacy. Some would say that by living in a small town, you give up your right to privacy because everyone knows what everyone else is doing. Living here is a choice – for me to improve my family’s quality of life. Sharing all of the details of my life – not so much.

When I go to my doctor (who also happens to be a parent from my daughter’s school), I fully expect that any sort of information that I share with him, or that he obtains as a result of lab tests or interviews, or care that he provides is not available for anyone to view. On the flip side, I want researchers to be able to take my lab information combined with my health history in order to do research on the effectiveness of certain medications or treatment plans.

As a result of this dichotomy, Congress (in 1996) started to address governance regarding the transmission of this type of data. The Health Insurance Portability and Accountability Act of 1996 (HIPAA) is a Federal law that sets national standards for how health care plans, health care clearinghouses, and most health care providers protect the privacy of a patient’s health information. With certain exceptions, the Privacy Rule protects a subset of individually identifiable health information, known as protected health information or PHI, that is held or maintained by covered entities or their business associates acting for the covered entity. PHI is any information held by a covered entity which concerns health status, provision of health care, or payment for health care that can be linked to an individual.

Many payers have this type of data in their systems (perhaps in a Claims Administration system), and have the need to share data between organizational entities. Do you know if PHI data is being shared outside of the originating system? Do you know if PHI is available to resources that have no necessity to access this information? Do you know if PHI data is being shared outside your organization?

If you can answer yes to each of these questions – fantastic. You are well ahead of the curve. If not – you need to start considering solutions that can

I want to researchers to have access to medically relevant data so they can find the cures to some horrific diseases. I want to feel comfortable sharing health information with my doctor. I want to feel comfortable that my health insurance company is respecting my privacy. Now to get my kids to stop oversharing.

Share
Posted in Customers, Data Governance, Data masking, Data Privacy, Data Security, Governance, Risk and Compliance, Healthcare | Tagged , , , , , | Leave a comment

People, Processes and Technology – Don’t Forget the TECHNOLOGY!

As a routine matter of delivering care, billing for services and operating their hospitals and physician practices, healthcare providers deal with patient’s protected health information all day, every day. Dealing with the data becomes routine and it’s easy for sometimes onerous security and privacy policies and procedures to be overlooked. While we’d all like that not to be the case, delivering healthcare (and getting paid for it) is a hugely complex undertaking and focusing exclusively on human processes and calling for constant vigilance and attention to detail can only go so far. (more…)

Share
Posted in Data masking, Healthcare, Professional Services | Tagged , , , , , , , , | Leave a comment