Tag Archives: Data Services

More Evidence That Data Integration Is Clearly Strategic

Data Integration Is Clearly Strategic

Data Integration Is Strategic

A recent study from Epicor Software Corporation surveyed more than 300 IT and business decision-makers.  The study results highlighted the biggest challenges and opportunities facing Australian businesses. The independent research report “From Business Processes to Product Distribution” was based upon a survey of Australian organizations with more than 20 employees.

Key findings from the report include:

  • 65% of organizations cite data processing and integration as hampering distribution capability, with nearly half claiming their existing software and ERP is not suitable for distribution.
  • Nearly two-thirds of enterprises have some form of distribution process, involving products or services.
  • More than 80% of organizations have at least some problem with product or service distribution.
  • More than 50% of CIOs in organizations with distribution processes believe better distribution would increase revenue and optimize business processes, with a further 38% citing reduced operating costs.

The core findings: “With better data integration comes better automation and decision making.”

This report is one of many I’ve seen over the years that come to the same conclusion.  Most of those involved with the operations of the business don’t have access to key data points they need, thus they can’t automate tactical decisions, and also cannot “mine” the data, in terms of understanding the true state of the business.

The more businesses deal with building and moving products, the more data integration becomes an imperative value.  As stated in this survey, as well as others, the large majority cite “data processing and integration as hampering distribution capabilities.”

Of course, these issues goes well beyond Australia.  Most enterprises I’ve dealt with have some gap between the need to share key business data to support business processes, and decision support, and what current exists in terms of data integration capabilities.

The focus here is on the multiple values that data integration can bring.  This includes:

  • The ability to track everything as it moves from manufacturing, to inventory, to distribution, and beyond.  You to bind these to core business processes, such as automatic reordering of parts to make more products, to fill inventory.
  • The ability to see into the past, and to see into the future.  The emerging approaches to predictive analytics allow businesses to finally see into the future.  Also, to see what went truly right and truly wrong in the past.

While data integration technology has been around for decades, most businesses that both manufacture and distribute products have not taken full advantage of this technology.  The reasons range from perceptions around affordability, to the skills required to maintain the data integration flow.  However, the truth is that you really can’t afford to ignore data integration technology any longer.  It’s time to create and deploy a data integration strategy, using the right technology.

This survey is just an instance of a pattern.  Data integration was considered optional in the past.  With today’s emerging notions around the strategic use of data, clearly, it’s no longer an option.

FacebookTwitterLinkedInEmailPrintShare
Posted in Data First, Data Integration, Data Integration Platform, Data Quality | Tagged , , , | Leave a comment

BCBS 239 – What Are Banks Talking About?

I recently participated on an EDM Council panel on BCBS 239 earlier this month in London and New York. The panel consisted of Chief Risk Officers, Chief Data Officers, and information management experts from the financial industry. BCBS 239 set out 14 key principles requiring banks aggregate their risk data to allow banking regulators to avoid another 2008 crisis, with a deadline of Jan 1, 2016.  Earlier this year, the Basel Committee on Banking Supervision released the findings from a self-assessment from the Globally Systemically Important Banks (GISB’s) in their readiness to 11 out of the 14 principles related to BCBS 239. 

Given all of the investments made by the banking industry to improve data management and governance practices to improve ongoing risk measurement and management, I was expecting to hear signs of significant process. Unfortunately, there is still much work to be done to satisfy BCBS 239 as evidenced from my findings. Here is what we discussed in London and New York.

  • It was clear that the “Data Agenda” has shifted quite considerably from IT to the Business as evidenced by the number of risk, compliance, and data governance executives in the room.  Though it’s a good sign that business is taking more ownership of data requirements, there was limited discussions on the importance of having capable data management technology, infrastructure, and architecture to support a successful data governance practice. Specifically capable data integration, data quality and validation, master and reference data management, metadata to support data lineage and transparency, and business glossary and data ontology solutions to govern the terms and definitions of required data across the enterprise.
  • With regard to accessing, aggregating, and streamlining the delivery of risk data from disparate systems across the enterprise and simplifying the complexity that exists today from point to point integrations accessing the same data from the same systems over and over again creating points of failure and increasing the maintenance costs of supporting the current state.  The idea of replacing those point to point integrations via a centralized, scalable, and flexible data hub approach was clearly recognized as a need however, difficult to envision given the enormous work to modernize the current state.
  • Data accuracy and integrity continues to be a concern to generate accurate and reliable risk data to meet normal and stress/crisis reporting accuracy requirements. Many in the room acknowledged heavy reliance on manual methods implemented over the years and investing in Automating data integration and onboarding risk data from disparate systems across the enterprise is important as part of Principle 3 however, much of what’s in place today was built as one off projects against the same systems accessing the same data delivering it to hundreds if not thousands of downstream applications in an inconsistent and costly way.
  • Data transparency and auditability was a popular conversation point in the room as the need to provide comprehensive data lineage reports to help explain how data is captured, from where, how it’s transformed, and used remains a concern despite advancements in technical metadata solutions that are not integrated with their existing risk management data infrastructure
  • Lastly, big concerns regarding the ability to capture and aggregate all material risk data across the banking group to deliver data by business line, legal entity, asset type, industry, region and other groupings, to support identifying and reporting risk exposures, concentrations and emerging risks.  This master and reference data challenge unfortunately cannot be solved by external data utility providers due to the fact the banks have legal entity, client, counterparty, and securities instrument data residing in existing systems that require the ability to cross reference any external identifier for consistent reporting and risk measurement.

To sum it up, most banks admit they have a lot of work to do. Specifically, they must work to address gaps across their data governance and technology infrastructure.BCBS 239 is the latest and biggest data challenge facing the banking industry and not just for the GSIB’s but also for the next level down as mid-size firms will also be required to provide similar transparency to regional regulators who are adopting BCBS 239 as a framework for their local markets.  BCBS 239 is not just a deadline but the principles set forth are a key requirement for banks to ensure they have the right data to manage risk and ensure transparency to industry regulators to monitor system risk across the global markets. How ready are you?

FacebookTwitterLinkedInEmailPrintShare
Posted in Banking & Capital Markets, Data Aggregation, Data Governance, Data Services | Tagged , , , | Leave a comment

Moving to the Cloud: 3 Data Integration Facts That Every Enterprise Should Understand

Cloud Data Integration

Cloud Data Integration

According to a survey conducted by Dimensional Research and commissioned by Host Analytics, “CIOs continue to grow more and more bullish about cloud solutions, with a whopping 92% saying that cloud provides business benefits, according to a recent survey. Nonetheless, IT execs remain concerned over how to avoid SaaS-based data silos.”

Since the survey was published, many enterprises have, indeed, leveraged the cloud to host business data in both IaaS and SaaS incarnations.  Overall, there seems to be two types of enterprises: First are the enterprises that get the value of data integration.  They leverage the value of cloud-based systems, and do not create additional data silos.  Second are the enterprises that build cloud-based data silos without a sound data integration strategy, and thus take a few steps backward, in terms of effectively leveraging enterprise data.

There are facts about data integration that most in enterprise IT don’t yet understand, and the use of cloud-based resources actually makes things worse.  The shame of it all is that, with a bit of work and some investment, the value should come back to the enterprises 10 to 20 times over.  Let’s consider the facts.

Fact 1: Implement new systems, such as those being stood up on public cloud platforms, and any data integration investment comes back 10 to 20 fold.  The focus is typically too much on cost and not enough on the benefit, when building a data integration strategy and investing in data integration technology.

Many in enterprise IT point out that their problem domain is unique, and thus their circumstances need special consideration.  While I always perform domain-specific calculations, the patterns of value typically remain the same.  You should determine the metrics that are right for your enterprise, but the positive values will be fairly consistent, with some varying degrees.

Fact 2: It’s not just about data moving from place-to-place, it’s also about the proper management of data.  This includes a central understanding of data semantics (metadata), and a place to manage a “single version of the truth” when it comes to dealing massive amounts of distributed data that enterprises must typically manage, and now they are also distributed within public clouds.

Most of those who manage enterprise data, cloud or no-cloud, have no common mechanism to deal with the meaning of the data, or even the physical location of the data.  While data integration is about moving data from place to place to support core business processes, it should come with a way to manage the data as well.  This means understanding, protecting, governing, and leveraging the enterprise data, both locally and within public cloud providers.

Fact 3: Some data belongs on clouds, and some data belongs in the enterprise.  Those in enterprise IT have either pushed back on cloud computing, stating that data outside the firewall is a bad idea due to security, performance, legal issues…you name it.  Others try to move all data to the cloud.  The point of value is somewhere in between.

The fact of the matter is that the public cloud is not the right fit for all data.  Enterprise IT must carefully consider the tradeoff between cloud-based and in-house, including performance, security, compliance, etc..  Finding the best location for the data is the same problem we’ve dealt with for years.  Now we have cloud computing as an option.  Work from your requirements to the target platform, and you’ll find what I’ve found: Cloud is a fit some of the time, but not all of the time.

 

FacebookTwitterLinkedInEmailPrintShare
Posted in Cloud, Cloud Application Integration, Cloud Computing, Cloud Data Integration, Data Integration | Tagged , , | Leave a comment

ANNOUNCING! The 2012 Data Virtualization Architect-to-Architect & Business Value Program

Today, agility and timely visibility are critical to the business. No wonder CIO.com, states that business intelligence (BI) will be the top technology priority for CIOs in 2012. However, is your data architecture agile enough to handle these exacting demands?

In his blog Top 10 Business Intelligence Predictions For 2012, Boris Evelson of Forrester Research, Inc., states that traditional BI approaches often fall short for the two following reasons (among many others):

  • BI hasn’t fully empowered information workers, who still largely depend on IT
  • BI platforms, tools and applications aren’t agile enough (more…)
FacebookTwitterLinkedInEmailPrintShare
Posted in Big Data, Business/IT Collaboration, CIO, Customer Acquisition & Retention, Customers, Data Integration, Data Integration Platform, Data masking, Data Privacy, Data Quality, Data Services, Data Transformation, Data Warehousing, Governance, Risk and Compliance, Informatica 9.1, Informatica Events, Mainframe, Master Data Management, Mergers and Acquisitions, Operational Efficiency, Profiling, Real-Time, SOA, Vertical | Tagged , , , , , , , , , , , , | Leave a comment

What it Takes to Be a Leader in Data Virtualization!

If you haven’t already, I think you should read The Forrester Wave™: Data Virtualization, Q1 2012. For several reasons – one, to truly understand the space, and two, to understand the critical capabilities required to be a solution that solves real data integration problems.

At the very outset, let’s clearly define Data Virtualization. Simply put, Data Virtualization is foundational to Data Integration. It enables fast and direct access to the critical data and reports that the business needs and trusts. It is not to be confused with simple, traditional Data Federation. Instead, think of it as a superset which must complement existing data architectures to support BI agility, MDM and SOA. (more…)

FacebookTwitterLinkedInEmailPrintShare
Posted in Data Integration Platform, Data masking, Data Quality, Data Services, Data Transformation, Data Warehousing, Enterprise Data Management, Financial Services, Governance, Risk and Compliance, Healthcare, Informatica 9.1, Integration Competency Centers, Mainframe, Master Data Management, Mergers and Acquisitions, News & Announcements, Operational Efficiency, Pervasive Data Quality, Profiling, Public Sector, Real-Time, SOA, Telecommunications, Vertical | Tagged , , , , , , , , , , | Leave a comment

Dodd-Frank Legislation and Structured Data Retention

The “Dodd-Frank Wall Street Reform and Consumer Protection Act” has recently been passed by the US federal government to regulate financial institutions. Per this legislation, there will be more “watchdog” agencies that will be auditing banks, lending and investment institutions to ensure compliance. As an example, there will be an Office of Financial Research within the Federal Treasury responsible for collecting and analyzing data. This legislation brings with it a higher risk of fines for non-compliance. (more…)

FacebookTwitterLinkedInEmailPrintShare
Posted in Application ILM, Application Retirement, Big Data, Business Impact / Benefits, Business/IT Collaboration, CIO, Customer Acquisition & Retention, Customer Services, Customers, Data Governance, Data Services, Data Warehousing, Database Archiving, Enterprise Data Management, Financial Services, Governance, Risk and Compliance, Mainframe, Mergers and Acquisitions, Operational Efficiency | Tagged , , , , , , , , , , , , , , , | Leave a comment

Seven Essential Best Practices For Data Center Consolidation

Data center consolidation is much more than physical movement of servers and infrastructure.  In fact, the facility costs and power savings are just the tip of the opportunity. The biggest benefits come from using the consolidation initiative as a catalyst to rationalize the application portfolio, archive inactive data and establish one version of the truth for the data that is left. (more…)

FacebookTwitterLinkedInEmailPrintShare
Posted in Application ILM, Application Retirement, Cloud Computing, Data Integration, Data Quality, Data Services, Data Warehousing, Enterprise Data Management, Integration Competency Centers | Tagged , , , , , , , , , , | Leave a comment

Loose Coupling Nirvana – Canonical Techniques Part 2

To continue from my prior blog article on this topic, loose coupling between applications in an enterprise portfolio is an IT architect’s dream. If two or more applications are tightly coupled, then it becomes impossible to change or enhance one without impacting the other. Loosely coupled applications on the other hand can be enhanced independently with little or no impact on other systems. The net result is the ability to rapidly change the IT portfolio in response to business opportunities. In short, organizational agility becomes a competitive weapon. But is this dream achievable or is it only wishful thinking? (more…)

FacebookTwitterLinkedInEmailPrintShare
Posted in B2B, Data Governance, Data Integration, Data Services, Integration Competency Centers | Tagged , , , , , , , , | 1 Comment