Tag Archives: data analytics

Once Again, Data Integration Proves Critical to Data Analytics

When it comes to cloud-based data analytics, a recent study by Ventana Research (as found in Loraine Lawson’s recent blog post) provides a few interesting data points.  The study reveals that 40 percent of respondents cited lowered costs as a top benefit, improved efficiency was a close second at 39 percent, and better communication and knowledge sharing also ranked highly at 34 percent.

Ventana Research also found that organizations cite a unique and more complex reason to avoid cloud analytics and BI.  Legacy integration work can be a major hindrance, particularly when BI tools are already integrated with other applications.  In other words, it’s the same old story:

You can’t make sense of data that you can’t see.

Data Integration Proves Critical to Data Analytics

Data Integration is Critical to Data Analytics

The ability to deal with existing legacy systems when moving to concepts such as big data or cloud-based analytics is critical to the success of any enterprise data analytics strategy.  However, most enterprises don’t focus on data integration as much as they should, and hope that they can solve the problems using ad-hoc approaches.

These approaches rarely work as well a they should, if at all.  Thus, any investment made in data analytics technology is often diminished because the BI tools or applications that leverage analytics can’t see all of the relevant data.  As a result, only part of the story is told by the available data, and those who leverage data analytics don’t rely on the information, and that means failure.

What’s frustrating to me about this issue is that the problem is easily solved.  Those in the enterprise charged with standing up data analytics should put a plan in place to integrate new and legacy systems.  As part of that plan, there should be a common understanding around business concepts/entities of a customer, sale, inventory, etc., and all of the data related to these concepts/entities must be visible to the data analytics engines and tools.  This requires a data integration strategy, and technology.

As enterprises embark on a new day of more advanced and valuable data analytics technology, largely built upon the cloud and big data, the data integration strategy should be systemic.  This means mapping a path for the data from the source legacy systems, to the views that the data analytics systems should include.  What’s more, this data should be in real operational time because data analytics loses value as the data becomes older and out-of-date.  We operate a in a real-time world now.

So, the work ahead requires planning to occur at both the conceptual and physical levels to define how data analytics will work for your enterprise.  This includes what you need to see, when you need to see it, and then mapping a path for the data back to the business-critical and, typically, legacy systems.  Data integration should be first and foremost when planning the strategy, technology, and deployments.

FacebookTwitterLinkedInEmailPrintShare
Posted in Data Aggregation, Data Integration, Data Integration Platform, Data Quality | Tagged , , , | Leave a comment

Data Mining and Analytics in the Presidential Race – Sinister or Just Sensible?

A lot of media reports have been surfacing lately about “secretive” data mining activities taking place within the presidential campaign. Many articles paint the efforts with a sinister caste, implying that underhanded invasions of privacy are taking place.

But to any seasoned data professional, data mining is a discovery tool that pulls nuggets of insight out of mountains of data. For any business that wants to get ahead in today’s hyper-competitive global economy, advanced data mining and analysis is not a luxury, it is a necessity. As USA Today’s Jack Gillum describes the Romney campaign’s data analytics: (more…)

FacebookTwitterLinkedInEmailPrintShare
Posted in Big Data, Data Privacy | Tagged , , , , , , , | Leave a comment

Healthcare and CEP – A Discussion

In this video, Richard Cramer, chief healthcare strategist, and Scott Fingerhut, senior director, product marketing, CEP, Informatica, discuss healthcare and CEP (Complex Event Processing).

Richard and Scott cover the following topics:
- What is CEP;
- How CEP pertains to healthcare;
- How CEP differs from data warehouse analytics;
- What some of the applications of CEP are in the healthcare environment; and,
- Where the opportunities are for companies who have already invested heavily in meaningful use and EHRs.

FacebookTwitterLinkedInEmailPrintShare
Posted in Complex Event Processing, Vertical | Tagged , , , , , | Leave a comment