Category Archives: Enterprise Data Management

Don’t Fire the CIO, Transform the Business

Transform the Business

Transform the Business

The headline on the Venture Beat website this weekend was Why you should fire your CIO. The point of the article was that the rest of the executive suite in most organizations is ignorant about IT issues and has abdicated responsibility to the CIO, or they build their own information solutions without sufficient competence in information management. The article suggests that firing the CIO is one way to pass accountability for information management to the business leaders since there will be no place for them to hide. They simply won’t be able to deflect the decisions to the CIO. (more…)

FacebookTwitterLinkedInEmailPrintShare
Posted in Business/IT Collaboration, CIO, Enterprise Data Management, Integration Competency Centers | Tagged , , , | Leave a comment

Why Enterprise Architects Need to Think About Data First

Enterprise Architects Need to Think About Data First

Enterprise Architects: Think “Data First”

Enterprise Architects (EAs) are increasingly being asked to think 3-5 years out.  This means that they need to take an even more active part in the strategy process, and to help drive business transformation.  A CIO that we talked to recently said;

 “Enterprise Architecture needs to be the forward, business facing component of IT.  Architects need to create a regular structure for IT based on the service and product line functions/capabilities. They need to be connected to their business counterparts. They need to be so tied to the product and service road map that they can tie changes directly to the IT roadmap. Often times, I like to pair a Chief Business Strategist with a Chief Enterprise Architect”.

To get there, Enterprise Architects are going to have to think differently about enterprise architecture. Specifically, they need think “data first” to break through the productivity barrier and deliver business value in the time frame that business requires it.

IT is Not Meeting the Needs of the Business

A study by McKinsey and Company has found that IT is not delivering in the time frame that business requires.  Even worse, the performance ratings have been dropping over the past three years.  And even worse than that, 20% of the survey respondents are calling for a change in IT leadership.

Our talks with CIOs and Enterprise Architects tell us that the ability to access, manage and deliver data on a timely basis is the biggest bottleneck in the process of delivering business initiatives.  Gartner predicts that by 2018, more than half the cost of implementing new large systems will be spent on integration.

The Causes: It’s Only Going to Get Worse

Data needs to be easily discoverable and sharable across multiple uses.  Today’s application-centric architectures do not provide that flexibility. This means any new business initiative is going to be slowed by issues relating to finding, accessing, and managing data.  Some of the causes of problems will include:

  • Data Silos: Decades of applications-focused architecture have left us with unconnected “silos of data.”
  • Lack of Data Management Standards: The fact is that most organizations do not manage data as a single system. This means that they are dealing with a classic “spaghetti diagram” of data integration and data management technologies that are difficult to manage and change.
  • Growth of Data Complexity: There is a coming explosion of data complexity: partner data, social data, mobile data, big data, Internet of Things data.
  • Growth of Data Users: There is also a coming explosion of new data users, who will be looking to self-service.
  • Increasing Technology Disruption:  Gartner predicts that we are entering a period of increased technology disruption.

Looking forward, organizations are increasingly running on the same few enterprise applications and those applications are rapidly commoditizing.  The point is that there is little competitive differentiation to be had from applications.  The only meaningful and sustainable competitive differentiation will come from your data and how you use it.

Recommendations for Enterprise Architects

  1. Think “data first” to accelerate business value delivery and to drive data as your competitive advantage. Designing data as a sharable resource will dramatically accelerate your organization’s ability to produce useful insights and deliver business initiatives.
  2. Think about enterprise data management as a single system.  It should not be a series of one-off, custom, “works of art.”  You will reduce complexity, save money, and most importantly speed the delivery of business initiatives.
  3. Design your data architecture for speed first.  Do not buy into the belief that you must accept trade-offs between speed, cost, or quality. It can be done, but you have to design your enterprise data architecture to accomplish that goal from the start.
  4. Design to know everything about your data. Specifically, gather and carefully manage all relevant metadata.  It will speed up data discovery, reduce errors, and provide critical business context.  A full compliment of business and technical metadata will enable recommendation #5.
  5. Design for machine-learning and automation. Your data platform should be able to automate routine tasks and intelligently accelerate more complex tasks with intelligent recommendations.  This is the only way you are going to be able to meet the demands of the business and deal with the growing data complexity and technology disruptions.

Technology disruption will bring challenges and opportunities.  For more on this subject, see the Informatica eBook, Think ‘Data First’ to Drive Business Value.

FacebookTwitterLinkedInEmailPrintShare
Posted in Data Services, Enterprise Data Management | Tagged , | Leave a comment

How Much is Disconnected Well Data Costing Your Business?

“Not only do we underestimate the cost for projects up to 150%, but we overestimate the revenue it will generate.” This quotation from an Energy & Petroleum (E&P) company executive illustrates the negative impact of inaccurate, inconsistent and disconnected well data and asset data on revenue potential. 

“Operational Excellence” is a common goal of many E&P company executives pursuing higher growth targets. But, inaccurate, inconsistent and disconnected well data and asset data may be holding them back. It obscures the complete picture of the well information lifecycle, making it difficult to maximize production efficiency, reduce Non-Productive Time (NPT), streamline the oilfield supply chain, calculate well by-well profitability,  and mitigate risk.

Well data expert, Stephanie Wilkin shares details about the award-winning collaboration between Noah Consulting and Devon Energy.

Well data expert, Stephanie Wilkin shares details about the award-winning collaboration between Noah Consulting and Devon Energy.

To explain how E&P companies can better manage well data and asset data, we hosted a webinar, “Attention E&P Executives: Streamlining the Well Information Lifecycle.” Our well data experts Stephanie Wilkin, Senior Principal Consultant at Noah Consulting, and Stephan Zoder, Director of Value Engineering at Informatica shared some advice. E&P companies should reevaluate “throwing more bodies at a data cleanup project twice a year.” This approach does not support the pursuit of operational excellence.

In this interview, Stephanie shares details about the award-winning collaboration between Noah Consulting and Devon Energy to create a single trusted source of well data, which is standardized and mastered.

Q. Congratulations on winning the 2014 Innovation Award, Stephanie!
A. Thanks Jakki. It was really exciting working with Devon Energy. Together we put the technology and processes in place to manage and master well data in a central location and share it with downstream systems on an ongoing basis. We were proud to win the 2014 Innovation Award for Best Enterprise Data Platform.

Q. What was the business need for mastering well data?
A. As E&P companies grow so do their needs for business-critical well data. All departments need clean, consistent and connected well data to fuel their applications. We implemented a master data management (MDM) solution for well data with the goals of improving information management, business productivity, organizational efficiency, and reporting.

Q. How long did it take to implement the MDM solution for well data?
A. The Devon Energy project kicked off in May of 2012. Within five months we built the complete solution from gathering business requirements to development and testing.

Q. What were the steps in implementing the MDM solution?
A: The first and most important step was securing buy-in on a common definition for master well data or Unique Well Identifier (UWI). The key was to create a definition that would meet the needs of various business functions. Then we built the well master, which would be consistent across various systems, such as G&G, Drilling, Production, Finance, etc. We used the Professional Petroleum Data Management Association (PPDM) data model and created more than 70 unique attributes for the well, including Lahee Class, Fluid Direction, Trajectory, Role and Business Interest.

As part of the original go-live, we had three source systems of well data and two target systems connected to the MDM solution. Over the course of the next year, we added three additional source systems and four additional target systems. We did a cross-system analysis to make sure every department has the right wells and the right data about those wells. Now the company uses MDM as the single trusted source of well data, which is standardized and mastered, to do analysis and build reports.

Q. What’s been the traditional approach for managing well data?
A. Typically when a new well is created, employees spend time entering well data into their own systems. For example, one person enters well data into the G&G application. Another person enters the same well data into the Drilling application. A third person enters the same well data into the Finance application. According to statistics, it takes about 30 minutes to enter wells into a particular financial application.

So imagine if you need to add 500 new wells to your systems. This is common after a merger or acquisition. That translates to roughly 250 hours or 6.25 weeks of employee time saved on the well create process! By automating across systems, you not only save time, you eliminate redundant data entry and possible errors in the process.

Q. That sounds like a painfully slow and error-prone process.
A. It is! But that’s only half the problem. Without a single trusted source of well data, how do you get a complete picture of your wells? When you compare the well data in the G&G system to the well data in the Drilling or Finance systems, it’s typically inconsistent and difficult to reconcile. This leads to the question, “Which one of these systems has the best version of the truth?” Employees spend too much time manually reconciling well data for reporting and decision-making.

Q. So there is a lot to be gained by better managing well data.
A. That’s right. The CFO typically loves the ROI on a master well data project. It’s a huge opportunity to save time and money, boost productivity and get more accurate reporting.

Q: What were some of the business requirements for the MDM solution?
A: We couldn’t build a solution that was narrowly focused on meeting the company’s needs today. We had to keep the future in mind. Our goal was to build a framework that was scalable and supportable as the company’s business environment changed. This allows the company to add additional data domains or attributes to the well data model at any time.

Noah Consulting's MDM Trust Framework for well data

The Noah Consulting MDM Trust Framework was used to build a single trusted source of well data

Q: Why did you choose Informatica MDM?
A: The decision to use Informatica MDM for the MDM Trust Framework came down to the following capabilities:

  • Match and Merge: With Informatica, we get a lot of flexibility. Some systems carry the API or well government ID, but some don’t. We can match and merge records differently based on the system.
  • X-References: We keep a cross-reference between all the systems. We can go back to the master well data and find out where that data came from and when. We can see where changes have occurred because Informatica MDM tracks the history and lineage.
  • Scalability: This was a key requirement. While we went live after only 5 months, we’ve been continually building out the well master based on the requiremets of the target systems.
  • Flexibility: Down the road, if we want to add an additional facet or classification to the well master, the framework allows for that.
  • Simple Integration: Instead of building point-to-point integrations, we use the hub model.

In addition to Informatica MDM, our Noah Consulting MDM Trust Framework includes Informatica PowerCenter for data integration, Informatica Data Quality for data cleansing and Informatica Data Virtualization.

Q: Can you give some examples of the business value gained by mastering well data?
A: One person said to me, “I’m so overwhelmed! We’ve never had one place to look at this well data before.” With MDM centrally managing master well data and fueling key business applications, many upstream processes can be optimized to achieve their full potential value.

People spend less time entering well data on the front end and reconciling well data on the back end. Well data is entered once and it’s automatically shared across all systems that need it. People can trust that it’s consistent across systems. Also, because the data across systems is now tied together, it provides business value they were unable to realize before, such as predictive analytics. 

Q. What’s next?
A. There’s a lot of insight that can be gained by understanding the relationships between the well, and the people, equipment and facilities associated with it. Next, we’re planning to add the operational hierarchy. For example, we’ll be able to identify which production engineer, reservoir engineer and foreman are working on a particular well.

We’ve also started gathering business requirements for equipment and facilities to be tied to each well. There’s a lot more business value on the horizon as the company streamlines their well information lifecycle and the valuable relationships around the well.

If you missed the webinar, you can watch the replay now: Attention E&P Executives: Streamlining the Well Information Lifecycle.

FacebookTwitterLinkedInEmailPrintShare
Posted in Business Impact / Benefits, Data Integration, Data Quality, Enterprise Data Management, Master Data Management, Operational Efficiency, PowerCenter, Utilities & Energy | Tagged , , , , , , , | Leave a comment

To Engage Business, Focus on Information Management rather than Data Management

Focus on Information Management

Focus on Information Management

IT professionals have been pushing an Enterprise Data Management agenda for decades rather than Information Management and are frustrated with the lack of business engagement. So what exactly is the difference between Data Management and Information Management and why does it matter? (more…)

FacebookTwitterLinkedInEmailPrintShare
Posted in Architects, Business Impact / Benefits, Business/IT Collaboration, CIO, Data Governance, Data Integration, Enterprise Data Management, Integration Competency Centers, Master Data Management | Tagged , , , , | Leave a comment

Conversations on Data Quality in Underwriting – Part 2

underwriting data qualityDid I really compare data quality to flushing toilet paper?  Yeah, I think I did.  Makes me laugh when I read that, but still true.  And yes, I am still playing with more data.  This time it’s a location schedule for earthquake risk.  I see a 26-story structure with a building value of only $136,000 built in who knows what year.  I’d pull my hair out if it weren’t already shaved off.

So let’s talk about the six steps for data quality competency in underwriting.  These six steps are standard in the enterprise.  But, what we will discuss is how to tackle these in insurance underwriting.  And more importantly, what is the business impact to effective adoption of the competency.  It’s a repeating self-reinforcing cycle.  And when done correctly can be intelligent and adaptive to changing business needs.

Profile – Effectively profile and discover data from multiple sources

We’ll start at the beginning, a very good place to start.  First you need to understand your data.  Where is it from and in what shape does it come?  Whether internal or external sources, the profile step will help identify the problem areas.  In underwriting, this will involve a lot of external submission data from brokers and MGAs.  This is then combined with internal and service bureau data to get a full picture of the risk.  Identify you key data points for underwriting and a desired state for that data.  Once the data is profiled, you’ll get a very good sense of where your troubles are.  And continually profile as you bring other sources online using the same standards of measurement.  As a side, this will also help in remediating brokers that are not meeting the standard.

Measure – Establish data quality metrics and targets

As an underwriter you will need to determine what is the quality bar for the data you use.  Usually this means flagging your most critical data fields for meeting underwriting guidelines.  See where you are and where you want to be.  Determine how you will measure the quality of the data as well as desired state.  And by the way, actuarial and risk will likely do the same thing on the same or similar data.  Over time it all comes together as a team.

Design – Quickly build comprehensive data quality rules

This is the meaty part of the cycle, and fun to boot.  First look to your desired future state and your critical underwriting fields.  For each one, determine the rules by which you normally fix errant data.  Like what you do when you see a 30-story wood frame structure?  How do you validate, cleanse and remediate that discrepancy?  This may involve fuzzy logic or supporting data lookups, and can easily be captured.  Do this, write it down, and catalog it to be codified in your data quality tool.  As you go along you will see a growing library of data quality rules being compiled for broad use.

Deploy – Native data quality services across the enterprise

Once these rules are compiled and tested, they can be deployed for reuse in the organization.  This is the beautiful magical thing that happens.  Your institutional knowledge of your underwriting criteria can be captured and reused.  This doesn’t mean just once, but reused to cleanse existing data, new data and everything going forward.  Your analysts will love you, your actuaries and risk modelers will love you; you will be a hero.

Review – Assess performance against goals

Remember those goals you set for your quality when you started?  Check and see how you’re doing.  After a few weeks and months, you should be able to profile the data, run the reports and see that the needle will have moved.  Remember that as part of the self-reinforcing cycle, you can now identify new issues to tackle and adjust those that aren’t working.  One metric that you’ll want to measure over time is the increase of higher quote flow, better productivity and more competitive premium pricing.

Monitor – Proactively address critical issues

Now monitor constantly.  As you bring new MGAs online, receive new underwriting guidelines or launch into new lines of business you will repeat this cycle.  You will also utilize the same rule set as portfolios are acquired.  It becomes a good way to sanity check the acquisition of business against your quality standards.

In case it wasn’t apparent your data quality plan is now more automated.  With few manual exceptions you should not have to be remediating data the way you were in the past.  In each of these steps there is obvious business value.  In the end, it all adds up to better risk/cat modeling, more accurate risk pricing, cleaner data (for everyone in the organization) and more time doing the core business of underwriting.  Imagine if you can increase your quote volume simply by not needing to muck around in data.  Imagine if you can improve your quote to bind ratio through better quality data and pricing.  The last time I checked, that’s just good insurance business.

And now for something completely different…cats on pianos.  No, just kidding.  But check here to learn more about Informatica’s insurance initiatives.

FacebookTwitterLinkedInEmailPrintShare
Posted in Business Impact / Benefits, Data Quality, Enterprise Data Management, Financial Services | Tagged , , , , | Leave a comment

Enterprise Architects as Strategists

Data Architecture

The conversation at the Gartner Enterprise Architecture Summit was very interesting last week. They central them for years had been idea of closely linking enterprise architecture with the goals and strategy.  This year, Gartner added another layer to that conversation.  They are now actively promoting the idea of enterprise architects as strategists.

The reason why is simple.  The next wave of change is coming and it will significantly disrupt everybody.  Even worse, your new competitors may be coming from other industries.

Enterprise architects are in a position to take a leading role within the strategy process. This is because they are the people who best understand both business strategy and technology trends.

Some of the key ideas discussed included:

  • The boundaries between physical and digital products will blur
  • Every organization will need a technology strategy to survive
  • Gartner predicts that by 2017: 60% of the Global 1,000 will execute on at least one revolutionary and currently unimaginable business transformation effort.
  • The change is being driven by trends such as mobile, social, the connectedness of everything, cloud/hybrid, software-defined everything, smart machines, and 3D printing.

Observations

I agree with all of this.  My view is that this means that it is time for enterprise architects to think very differently about architecture.  Enterprise applications will come and go.  They are rapidly being commoditized in any case.  They need to think like strategists; in terms of market differentiation.  And nothing will differentiate an organization more than their data.    Example: Google autonomous cars.  Google is jumping across industry boundaries to compete in a new market with data as their primary differentiator. There will be many others.

Thinking data-first

Years of thinking of architecture from an application-first or business process-first perspective have left us with silos of data and the classic ‘spaghetti diagram” of data architecture. This is slowing down business initiative delivery precisely at the time organizations need to accelerate and make data their strategic weapon.  It is time to think data-first when it comes to enterprise architecture.

You will be seeing more from Informatica on this subject over the coming weeks and months.

Take a minute to comment on this article.  Your thoughts on how we should go about changing to a data-first perspective, both pro and con are welcomed.

Also, remember that Informatica is running a contest to design the data architecture of the year 2020.  Full details are here.

http://www.informatica.com/us/architects-challenge/

FacebookTwitterLinkedInEmailPrintShare
Posted in Architects, CIO, Data Integration, Data Integration Platform, Enterprise Data Management | Tagged , , , , , , , | Leave a comment

Health Plans, Create Competitive Differentiation with Risk Adjustment

improve risk adjustmentExploring Risk Adjustment as a Source of Competitive Differentiation

Risk adjustment is a hot topic in healthcare. Today, I interviewed my colleague, Noreen Hurley to learn more. Noreen tell us about your experience with risk adjustment.

Before I joined Informatica I worked for a health plan in Boston. I managed several programs  including CMS Five Start Quality Rating System and Risk Adjustment Redesign.  We recognized the need for a robust diagnostic profile of our members in support of risk adjustment. However, because the information resides in multiple sources, gathering and connecting the data presented many challenges. I see the opportunity for health plans to transform risk adjustment.

As risk adjustment becomes an integral component in healthcare, I encourage health plans to create a core competency around the development of diagnostic profiles. This should be the case for health plans and ACO’s.  This profile is the source of reimbursement for an individual. This profile is also the basis for clinical care management.  Augmented with social and demographic data, the profile can create a roadmap for successfully engaging each member.

Why is risk adjustment important?

Risk Adjustment is increasingly entrenched in the healthcare ecosystem.  Originating in Medicare Advantage, it is now applicable to other areas.  Risk adjustment is mission critical to protect financial viability and identify a clinical baseline for  members.

What are a few examples of the increasing importance of risk adjustment?

1)      Centers for Medicare and Medicaid (CMS) continues to increase the focus on Risk Adjustment. They are evaluating the value provided to the Federal government and beneficiaries.  CMS has questioned the efficacy of home assessments and challenged health plans to provide a value statement beyond the harvesting of diagnoses codes which result solely in revenue enhancement.   Illustrating additional value has been a challenge. Integrating data across the health plan will help address this challenge and derive value.

2)      Marketplace members will also require risk adjustment calculations.  After the first three years, the three “R’s” will dwindle down to one ‘R”.  When Reinsurance and Risk Corridors end, we will be left with Risk Adjustment. To succeed with this new population, health plans need a clear strategy to obtain, analyze and process data.  CMS processing delays make risk adjustment even more difficult.  A Health Plan’s ability to manage this information  will be critical to success.

3)      Dual Eligibles, Medicaid members and ACO’s also rely on risk management for profitability and improved quality.

With an enhanced diagnostic profile — one that is accurate, complete and shared — I believe it is possible to enhance care, deliver appropriate reimbursements and provide coordinated care.

How can payers better enable risk adjustment?

  • Facilitate timely analysis of accurate data from a variety of sources, in any  format.
  • Integrate and reconcile data from initial receipt through adjudication and  submission.
  • Deliver clean and normalized data to business users.
  • Provide an aggregated view of master data about members, providers and the relationships between them to reveal insights and enable a differentiated level of service.
  • Apply natural language processing to capture insights otherwise trapped in text based notes.

With clean, safe and connected data,  health plans can profile members and identify undocumented diagnoses. With this data, health plans will also be able to create reports identifying providers who would benefit from additional training and support (about coding accuracy and completeness).

What will clean, safe and connected data allow?

  • Allow risk adjustment to become a core competency and source of differentiation.  Revenue impacts are expanding to lines of business representing larger and increasingly complex populations.
  • Educate, motivate and engage providers with accurate reporting.  Obtaining and acting on diagnostic data is best done when the member/patient is meeting with the caregiver.  Clear and trusted feedback to physicians will contribute to a strong partnership.
  • Improve patient care, reduce medical cost, increase quality ratings and engage members.
FacebookTwitterLinkedInEmailPrintShare
Posted in B2B, B2B Data Exchange, Business Impact / Benefits, Business/IT Collaboration, CIO, Customer Acquisition & Retention, Data Governance, Data Integration, Enterprise Data Management, Healthcare, Master Data Management, Operational Efficiency | Tagged , , | Leave a comment

The Three Ingredients of Enterprise Information Management

Information Management

Enterprise Information Management

There is no shortage of buzzwords that speak to the upside and downside of data.  Big Data, Data as an Asset, the Internet of Things, Cloud Computing, One Version of the Truth, Data Breach, Black Hat Hacking, and so on. Clearly we are in the Information Age as described by Alvin Toffler in The Third Wave. But yet, most organizations are not effectively dealing with the risks of a data-driven economy nor are they getting the full benefits of all that data. They are stuck in a fire-fighting mode where each information management opportunity or problem is a one-time event that is man-handled with heroic efforts. There is no repeatability. The organization doesn’t learn from prior lessons and each business unit re-invents similar solutions. IT projects are typically late, over budget, and under delivered. There is a way to break out of this rut. (more…)

FacebookTwitterLinkedInEmailPrintShare
Posted in CIO, Data Integration, Enterprise Data Management, Integration Competency Centers | Tagged , , , , , , , , , | Leave a comment

A Data-Driven Healthcare Culture is Foundational to Delivering Personalized Medicine in Healthcare

According to a recent article in the LA Times, healthcare costs in the United States far exceed costs in other countries. For example, heart bypass surgery costs an average of $75,345 in the U.S. compared to $15,742 in the Netherlands and $16,492 in Argentina. In the U.S. healthcare accounts for 18% of the U.S. GDP and is increasing. 

Michelle Blackmer is an healthcare industry expert at Informatica

Michelle Blackmer is an healthcare industry expert at Informatica

Michelle Blackmer is an healthcare industry expert at Informatica. In this interview, she explains why business as usual isn’t good enough anymore. Healthcare organizations are rethinking how they do business in an effort to improve outcomes, reduce costs, and comply with regulatory pressures such as the Affordable Care Act (ACA). Michelle believes a data-driven healthcare culture is foundational to personalized medicine and discusses the importance of clean, safe and connected data in executing a successful transformation.

Q. How is the healthcare industry responding to the rising costs of healthcare?
In response to the rising costs of healthcare, regulatory pressures (i.e. Affordable Care Act (ACA)), and the need to better patient outcomes at lower costs, the U.S. healthcare industry is transforming from a volume-based to a value-based model. In this new model, healthcare organizations need to invest in delivering personalized medicine.

To appreciate the potential of personalized medicine, think about your own healthcare experience. It’s typically reactive. You get sick, you go to the doctor, the doctor issues a prescription and you wait a couple of days to see if that drug works. If it doesn’t, you call the doctor and she tries another drug. This process is tedious, painful and costly.

Now imagine if you had a chronic disease like depression or cancer. On average, any given prescription drug only works for half of those who take it. Among cancer patients, the rate of ineffectiveness jumps to 75 percent. Anti-depressants are effective in only 62 percent of those who take them.

Video: MD Anderson Cancer CenterOrganizations like MD Anderson and UPMC aim to put an end to cancer. They are combining scientific research with access to clean, safe and connected data (data of all types including genomic data). The insights revealed will empower personalized chemotherapies. Personalized medicine offers customized treatments based on patient history and best practices. Personalized medicine will transform healthcare delivery. Click on the links to watch videos about their transformational work.

Q. What role does data play in enabling personalized medicine?
Data is foundational to value-based care and personalized medicine. Not just any data will do. It needs to be clean, safe and connected data. It needs to be delivered rapidly across hallways and across networks.

As an industry, healthcare is at a stage where meaningful electronic data is being generated. Now you need to ensure that the data is accessible and trustworthy so that it can be rapidly analyzed. As data is aggregated across the ecosystem, married with financial and genomic data, data quality issues become more obvious. It’s vital that you can define the data issues so the people can spend their time analyzing the data to gain insights instead of wading through and manually resolving data quality issues.

The ability to trust data will differentiate leaders from the followers. Leaders will advance personalized medicine because they rely on clean, safe and connected data to:

1)      Practice analytics as a core competency
2)      Define evidence, deliver best practice care and personalize medicine
3)      Engage patients and collaborate to foster strong, actionable relationships

Healthcare e-bookTake a look at this Healthcare eBook for more on this topic: Potential Unlocked: Transforming Healthcare by Putting Information to Work.

Q. What is holding healthcare organizations back from managing their healthcare data like other mission-critical assets?
When you say other mission-critical assets, I think of facilitates, equipment, etc. Each of these assets has people and money assigned to manage and maintain them. The healthcare organizations I talk to who are highly invested in personalized medicine recognize that data is mission-critical. They are investing in the people, processes and technology needed to ensure data is clean, safe and connected. The technology includes data integration, data quality and master data management (MDM).

What’s holding other healthcare organizations back is that while they realize they need data governance, they wrongly believe they need to hire big teams of “data stewards” to be successful. In reality, you don’t need to hire a big team. Use the people you already have doing data governance. You may not have made this a formal part of their job description and they might not have data governance technologies yet, but they do have the skillset and they are already doing the work of a data steward.

So while a technology investment is required and you need people who can use the technology, start by formalizing the data stewardship work people are doing already as part of their current job. This way you have people who understand the data, taking an active role in the management of the data and they even get excited about it because their work is being recognized. IT takes on the role of enabling these people instead of having responsibility for all things data.

Q. Can you share examples of how immature information governance is a serious impediment to healthcare payers and providers?
Cost of Bad DataSure, without information governance, data is not harmonized across sources and so it is hard to make sense of it. This isn’t a problem when you are one business unit or one department, but when you want to get a comprehensive view or a view that incorporates external sources of information, this approach falls apart.

For example, let’s say the cardiology department in a healthcare organization implements a dashboard. The dashboard looks impressive. Then a group of physicians sees the dashboard, point out erroes and ask where the information (i.e. diagnosis or attending physician) came from. If you can’t answer these questions, trace the data back to its sources, or if you have data inconsistencies, the dashboard loses credibility. This is an example of how analytics fail to gain adoption and fail to foster innovation.

Q. Can you share examples of what data-driven healthcare organizations are doing differently?
Certainly, while many are just getting started on their journey to becoming data-driven, I’m seeing some inspiring  examples, including:

  • Implementing data governance for healthcare analytics. The program and data is owned by the business and enabled by IT and supported by technology such as data integration, data quality and MDM.
  • Connecting information from across the entire healthcare ecosystem including 3rd party sources like payers, state agencies, and reference data like credit information from Equifax, firmographics from Dun & Bradstreet or NPI numbers from the national provider registry.
  • Establishing consistent data definitions and parameters
  • Thinking about the internet of things (IoT) and how to incorporate device data into analysis
  • Engaging patients through non-traditional channels including loyalty programs and social media; tracking this information in a customer relationship management (CRM) system
  • Fostering collaboration by understanding the relationships between patients, providers and the rest of the ecosystem
  • Analyzing data to understand what is working and what is not working so  that they can drive out unwanted variations in care

Q. What advice can you give healthcare provider and payer employees who want access to high quality healthcare data?
As with other organizational assets that deliver value—like buildings and equipment—data requires a foundational investment in people and systems to maximize return. In other words, institutions and individuals must start managing their mission-critical data with the same rigor they manage other mission-critical enterprise assets.

Q. Anything else you want to add?
Yes, I wanted to thank our 14 visionary customer executives at data-driven healthcare organizations such as MD Anderson, UPMC, Quest Diagnostics, Sutter Health, St. Joseph Health, Dallas Children’s Medical Center and Navinet for taking time out of their busy schedules to share their journeys toward becoming data-driven at Informatica World 2014.  In our next post, I’ll share some highlights about how they are using data, how they are ensuring it is clean, safe and connected and a few data management best practices. InformaticaWorld attendees will be able to download presentations starting today! If you missed InformaticaWorld 2014, stay tuned for our upcoming webinars featuring many of these examples.

 

 

FacebookTwitterLinkedInEmailPrintShare
Posted in Business Impact / Benefits, Business/IT Collaboration, Customers, Data Governance, Data Integration, Data Quality, Enterprise Data Management, Healthcare, Informatica World 2014, Master Data Management, Vertical | Tagged , , , , , , , , , , , , , , | Leave a comment

Business Beware! Corporate IT Is “Fixing” YOUR Data

It is troublesome to me to repeatedly get into conversations with IT managers who want to fix data “for the sake of fixing it”.  While this is presumably increasingly rare, due to my department’s role, we probably see a higher occurrence than the normal software vendor employee.  Given that, please excuse the inflammatory title of this post.

Nevertheless, once the deal is done, we find increasingly fewer of these instances, yet still enough, as the average implementation consultant or developer cares about this aspect even less.  A few months ago a petrochemical firm’s G&G IT team lead told me that he does not believe that data quality improvements can or should be measured.  He also said, “if we need another application, we buy it.  End of story.”  Good for software vendors, I thought, but in most organizations $1M here or there do not lay around leisurely plus decision makers want to see the – dare I say it – ROI.

This is not what a business - IT relationship should feel like

This is not what a business – IT relationship should feel like

However, IT and business leaders should take note that a misalignment due to lack OR disregard of communication is a critical success factor.  If the business does not get what it needs and wants AND it differs what Corporate IT is envisioning and working on – and this is what I am talking about here – it makes any IT investment a risky proposition.

Let me illustrate this with 4 recent examples I ran into:

1. Potential for flawed prioritization

A retail customer’s IT department apparently knew that fixing and enriching a customer loyalty record across the enterprise is a good and financially rewarding idea.  They only wanted to understand what the less-risky functional implementation choices where. They indicated that if they wanted to learn what the factual financial impact of “fixing” certain records or attributes, they would just have to look into their enterprise data warehouse.  This is where the logic falls apart as the warehouse would be just as unreliable as the “compromised” applications (POS, mktg, ERP) feeding it.

Even if they massaged the data before it hit the next EDW load, there is nothing inherently real-time about this as all OLTP are running processes of incorrect (no bidirectional linkage) and stale data (since the last load).

I would question if the business is now completely aligned with what IT is continuously correcting. After all, IT may go for the “easy or obvious” fixes via a weekly or monthly recurring data scrub exercise without truly knowing, which the “biggest bang for the buck” is or what the other affected business use cases are, they may not even be aware of yet.  Imagine the productivity impact of all the roundtripping and delay in reporting this creates.  This example also reminds me of a telco client, I encountered during my tenure at another tech firm, which fed their customer master from their EDW and now just found out that this pattern is doomed to fail due to data staleness and performance.

2. Fix IT issues and business benefits will trickle down

Client number two is a large North American construction Company.  An architect built a business case for fixing a variety of data buckets in the organization (CRM, Brand Management, Partner Onboarding, Mobility Services, Quotation & Requisitions, BI & EPM).

Grand vision documents existed and linked to the case, which stated how data would get better (like a sick patient) but there was no mention of hard facts of how each of the use cases would deliver on this.  After I gave him some major counseling what to look out and how to flesh it out – radio silence. Someone got scared of the math, I guess.

3. Now that we bought it, where do we start

The third culprit was a large petrochemical firm, which apparently sat on some excess funds and thought (rightfully so) it was a good idea to fix their well attributes. More power to them.  However, the IT team is now in a dreadful position having to justify to their boss and ultimately the E&P division head why they prioritized this effort so highly and spent the money.  Well, they had their heart in the right place but are a tad late.   Still, I consider this better late than never.

4. A senior moment

The last example comes from a South American communications provider. They seemingly did everything right given the results they achieved to date.  This gets to show that misalignment of IT and business does not necessarily wreak havoc – at least initially.

However, they are now in phase 3 of their roll out and reality caught up with them.  A senior moment or lapse in judgment maybe? Whatever it was; once they fixed their CRM, network and billing application data, they had to start talking to the business and financial analysts as complaints and questions started to trickle in. Once again, better late than never.

So what is the take-away from these stories. Why wait until phase 3, why have to be forced to cram some justification after the purchase?  You pick, which one works best for you to fix this age-old issue.  But please heed Sohaib’s words of wisdom recently broadcast on CNN Money “IT is a mature sector post bubble…..now it needs to deliver the goods”.  And here is an action item for you – check out the new way for the business user to prepare their own data (30 minutes into the video!).  Agreed?

FacebookTwitterLinkedInEmailPrintShare
Posted in Business Impact / Benefits, Business/IT Collaboration, CIO, Customer Acquisition & Retention, Customer Services, Data Aggregation, Data Governance, Data Integration, Data Quality, Data Warehousing, Enterprise Data Management, Master Data Management | Leave a comment