0

The Total Data Quality Movement is Long Overdue!

Total Data QualityTotal Quality Management, as it relates to products and services has it’s roots in the 1920s.  The 1960’s provided a huge boost with rise of guru’s such as Deming, Juran and Crosby.  Whilst each had their own contribution, common principles for TQM that emerged in this era remain in practice today:

  1. Management (C-level management) is ultimately responsible for quality
  2. Poor quality has a cost
  3. The earlier in the process you address quality, the lower the cost of correcting it
  4. Quality should be designed into the system

So for 70 years industry in general has understood the cost of poor quality, and how to avoid these costs.  So why is it that in 2014 I was party to a conversation that included the statement:

“I only came to the conference to see if you (Informatica) have solved the data quality problem.”

Ironically the TQM movement was only possible based on the analysis of data, but this is the one aspect that is widely ignored during TQM implementation.  So much for ‘Total’ Quality Management.

This person is not alone in their thoughts.  Many are waiting for the IT knight in shining armour, the latest and greatest data quality tools secured on their majestic steed, to ride in and save the day.  Data quality dragon slayed, cold drinks all round, job done.  This will not happen.  Put data quality in the context of total quality management principles to see why:  A single department cannot deliver data quality alone, regardless of the strength of their armoury.

I am not sure anyone would demand a guarantee of a high quality product from their machinery manufacturers.  Communications providers cannot deliver high quality customer services organisations through technology alone.  These suppliers have will have an influence on final product quality, but everyone understands equipment cannot deliver in isolation.  Good quality raw materials, staff that genuinely takes pride in their work and the correct incentives are key to producing high quality products and services.

So why is there an expectation that data quality can be solved by tools alone?

At a minimum senior management support is required to push other departments to change their behaviour and/or values.  So why aren’t senior management convinced that data quality is a problem worth their attention the way product & service quality is?

The fact that poor data quality has a high cost is reasonably well known via anecdotes.  However, cost has not been well quantified, and hence fails to grab the attention of senior management.  A 2005 paper by Richard Marsh[i] states:  “Research and reports by industry experts, including Gartner Group, PriceWaterhouseCoopers and The Data Warehousing Institute clearly identify a crisis in data quality management and a reluctance among senior decision makers to do enough about it.”  Little has changed since 2005.

However, we are living in a world where data generation, processing and consumption are increasing exponentially.  With all the hype and investment in data, we face the grim prospect of fully embracing an age of data-driven-everything founded on a very poor quality raw material.  Data quality is expected to be applied after generation, during the analytic phase.  How much will that cost us?  In order to function effectively, our new data-driven world must have high quality data running through every system and activity in an organization.

The Total Data Quality Movement is long overdue.

Only when every person in every organization understands the value of the data, do we have a chance of collectively solving the problem of poor data quality.  Data quality must be considered from data generation, through transactional processing and analysis right until the point of archiving.

Informatica DQ supports IT departments in automating data correction where possible, and highlighting poor data for further attention where automation is not possible.  MDM plays an important role in sustaining high quality data.  Informatica tools empower the business to share the responsibility for total data quality.

We are ready for Total Data Quality, but continue to await the Total Data Quality Movement to get off the ground.

(If you do not have time to waiting for TDQM to gain traction, we can help you measure the cost of poor quality data in your organization to win corporate buy-in now.)


[i] http://www.palgrave-journals.com/dbm/journal/v12/n2/pdf/3240247a.pdf

FacebookTwitterLinkedInEmailPrintShare
This entry was posted in Data Quality and tagged . Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>