0

4 Steps to Bring Big Data to the Business

Bring Big Data to the Business

Bring Big Data to the Business

By now, the business benefits of effectively leveraging big data have become well known. Enhanced analytical capabilities, greater understanding of customers, and ability to predict trends before they happen are just some of the advantages. But big data doesn’t just appear and present itself. It needs to be made tangible to the business. All too often, executives are intimidated by the concept of big data, thinking the only way to work with it is to have an advanced degree in statistics.

There are ways to make big data more than an abstract concept that can only be loved by data scientists. Four of these ways were recently covered in a report by David Stodder, director of business intelligence research for TDWI, as part of TDWI’s special report on What Works in Big Data.

Go real-time

The time is ripe for experimentation with real-time, interactive analytics technologies, Stodder says. The next major step in the movement toward big data is enabling real-time or near-real-time delivery of information. Real-time data has been a challenge with BI data for years, with limited success, Stodder says. The good news is that Hadoop framework, originally built for batch processing, now includes interactive querying and streaming applications, he reports. This opens the way for real-time processing of big data.

Design for self-service

Interest in self-service access to analytical data continues to grow. “Increasing users’ self-reliance and reducing their dependence on IT are broadly shared goals,” Stodder says. “Nontechnical users—those not well versed in writing queries or navigating data schemas—are requesting to do more on their own.” There is an impressive array of self-service tools and platforms now appearing on the market. “Many tools automate steps for underlying data access and integration, enabling users to do more source selection and transformation on their own, including for data from Hadoop files,” he says. “In addition, new tools are hitting the market that put greater emphasis on exploratory analytics over traditional BI reporting; these are aimed at the needs of users who want to access raw big data files, perform ad-hoc requests routinely, and invoke transformations after data extraction and loading (that is, ELT) rather than before.”

Encourage visualization

Nothing gets a point across faster than having data points visually displayed – decision-makers can draw inferences within seconds. “Data visualization has been an important component of BI and analytics for a long time, but it takes on added significance in the era of big data,” Stodder says. “As expressions of meaning, visualizations are becoming a critical way for users to collaborate on data; users can share visualizations linked to text annotations as well as other types of content, such as pictures, audio files, and maps to put together comprehensive, shared views.”

Unify views of data

Users are working with many different data types these days, and are looking to bring this information into a single view – “rather than having to move from one interface to another to view data in disparate silos,” says Stodder. Unstructured data – graphics and video files – can also provide a fuller context to reports, he adds.

FacebookTwitterLinkedInEmailPrintShare
This entry was posted in Big Data, Business Impact / Benefits, Data Transformation and tagged , , . Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>