0

Informatica’s Vibe virtual data machine can streamline big data work and allow data scientists to be more efficient

Informatica introduced an embeddable Vibe engine for not only transformation, but also for data quality, data profiling, data masking and a host of other data integration tasks. It will have a meaningful impact on the data scientist shortage.

Some clear economic facts are already apparent in the current world of data. Hadoop provides a significantly less expensive platform for gathering and analyzing data; cloud computing (potentially) is a more economical computing location than on-premises, if managed well. These are clearly positive developments. On the other hand, the human resources required to exploit these new opportunities are actually quite expensive. When there is greater demand than can be met in the short term for a hot product, suppliers put customers “on allocation” to manage the distribution to the most strategic customers.

This is the situation with “data scientists,” this new breed of experts with quantitative skills, data management skills, presentation skills and deep domain expertise. Current estimates are that there are 60,000 – 120,000 unfilled positions in the US alone. Naturally, data scientists are “allocated” to the most critical (economically lucrative) efforts, and their time is limited to those tasks that most completely leverage their unique skills.

To address this shortage, industry turns to universities to develop curricula to manufacture data scientists, but this will take time. In the meantime, salaries for data scientists are very high. Unfortunately, most data science work involves a great deal of effort that does not require data science skills, especially in the areas of managing the data prior to the insightful analytics. Some estimates are that data scientists spend 50-80% of their time finding and cleaning data, managing their computing platforms and writing programs. Reducing this effort  with better tools can not only make data scientists more effective, it have an impact on the most expensive component of big data – human resources.

Informatica today introduced Vibe, its embeddable virtual data machine to do exactly that. Informatica has, for over 20 years, provided tools that allow developers to design and execute transformation of data without the need for writing or maintaining code. With Vibe, this capability is extended to include data quality, masking and profiling and the engine itself can be embedded in the platforms where the work is performed. In addition, the engine can generate separate code from a single data management design.

In the case of Hadoop, Informatica designers can continue to operate in the familiar design studio, and have Vibe generate the code for whatever platform is needed.In this way, it is possible for an Informatica developer to develop these data management routines for Hadoop, without learning Hadoop or writing code in Java. And the real advantage is that the data scientist is freed from work that can be performed by those in lower pay grades and can parallelize that work too – multiple programmers and integration developers to one data scientist.

Vibe is a major innovation for Informatica that provides many interesting opportunities for it’s customers. Easing the data scientist problem is only one.

———————————

Neil Raden

This is a guest blog penned by Neil Raden, a well-known industry figure as an author, lecturer and practitioner. He has in-depth experience as a developer, consultant and analyst in all areas of Analytics and Decision Services including Big Data strategy and implementation, Business Intelligence, Data Warehousing, Statistical/Predictive Modeling, Decision Management, and IT systems integration including assessment, architecture, planning, project management and execution. Neil has authored dozens of sponsored white papers and articles, blogger and co-author of “Smart Enough) Systems” (Prentice Hall, 2007). He has 25 years as an actuary, software engineer and systems integrator.

FacebookTwitterLinkedInEmailPrintShare
This entry was posted in Big Data, Data Integration, Data masking, Data Quality and tagged , , , , , , , . Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>